





# Methods used in establishing control of bycatch in landings in Denmark

Marie Storr-Paulsen, Ander Nielsen, Einar Eg N and Kirsten

Håkansson

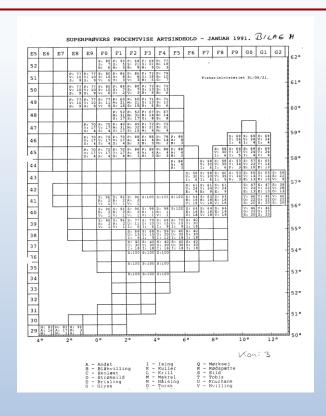
DTU Aqua

Institut for Akvatiske Ressourcer

### Why did we change the approach?

Denmark received in January 2019 from the EU commission

SUPPLEMENTARY OPENING MEMORANDUM


nr. 2014/2137

On the obligation concerning Council regulation (EF) nr. 1224/2009 and the Commissions implementing regulation (EU) nr. 404/2011 about a precise registration and reporting of all amount of fish, caught or obtained on board in the Danish industrial fishery.

#### 9 square method

In Denmark we have used the 9 square method to ensure the correct quota deduction by species

- month
- ICES square
- Fishery

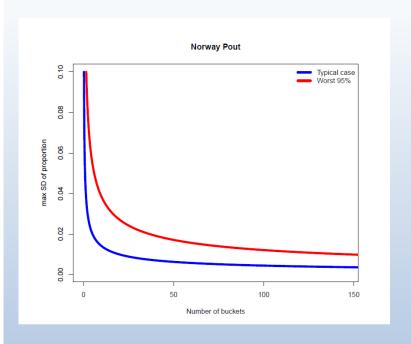


#### New system

The aim was to evaluate how many samples (10 kg buckets) are needed from every single industrial landing in order to determine the relative species composition with a given uncertainty.



### Background


- Since 1976 we have control samples
- Samples have been taken throughout the loading process, however number of samples depends on the results of the 1. sample.
- This gives numbers of samples per landing between 1-35 samples
- Last 10 years samples have been used
- For a given fishery analysis only includes species accounting for more than 0.5% of total catch weight

#### The data available

| Pishery            |              | Percent of cate | ch in weight | (rounded) |             | Samples |
|--------------------|--------------|-----------------|--------------|-----------|-------------|---------|
| Sand eel North Sea | Sprat        | Herring         | Sand eel     |           |             |         |
|                    | 1            | ī               | 99           |           |             | 2471    |
| Sprat 3A           | Anchovy      | Sprat           | Whiting      | Herring   |             |         |
| -                  | 2            | 47              | 3            | 49        |             | 247     |
| Sprat North Sea    | Sprat        | Whiting         | Herring      |           |             |         |
|                    | 78           | 1               | 20           |           |             | 209     |
| Sprat Baltic       | Sprat        | Herring         |              |           |             |         |
|                    | 85           | 15              |              |           |             | 317     |
| Norway Pout        | Blue whiting | Whiting         | Saithe       | Herring   | Norway Pout |         |
|                    | 3            | 2               | 1            | 11        | 83          | 112     |
| Blue whiting       | Blue whiting | Mackerel        |              |           |             |         |
|                    | 93           | 7               |              |           |             | 19      |
| Boar fish          | Boar fish    | Horse mackerel  |              |           |             |         |
|                    | 99           | 1               |              |           |             | 143     |

### How many samples to collect?

| Fishery            | Quantile              | SD=1% | SD = 2.5% | SD=5 |
|--------------------|-----------------------|-------|-----------|------|
| Sand eel North Sea | Median (typical case) | 1     | 1         |      |
|                    | 75% (get lower SD)    | 1     | 1         |      |
|                    | 95% (get lower SD)    | 7     | 2         |      |
| Sprat 3A           | Median (typical case) | 90    | 15        |      |
|                    | 75% (get lower SD)    | 89    | 15        |      |
|                    | 95% (get lower SD)    | 127   | 21        |      |
| Sprat North Sea    | Median (typical case) | 18    | 3         |      |
|                    | 75% (get lower SD)    | 61    | 10        |      |
|                    | 95% (get lower SD)    | 147   | 24        |      |
| Sprat Baltic       | Median (typical case) | 17    | 3         |      |
|                    | 75% (get lower SD)    | 45    | 8         |      |
|                    | 95% (get lower SD)    | 94    | 15        |      |
| Norway Pout        | Median (typical case) | 20    | 4         |      |
|                    | 75% (get lower SD)    | 65    | 11        |      |
|                    | 95% (get lower SD)    | 147   | 24        |      |
| Blue whiting       | Median (typical case) | 1     | 1         |      |
|                    | 75% (get lower SD)    | 1     | 1         |      |
|                    | 95% (get lower SD)    | 23    | 4         |      |
| Boar fish          | Median (typical case) | 1     | 1         |      |
|                    | 75% (get lower SD)    | 1     | 1         |      |
|                    | 95% (get lower SD)    | 12    | 2         |      |



### Species ID curse



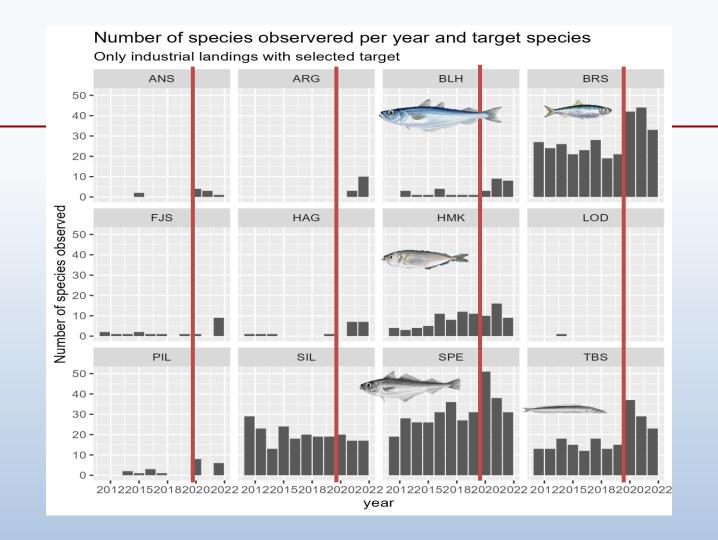


Har den 27/9 2022 deltaget i kurset:

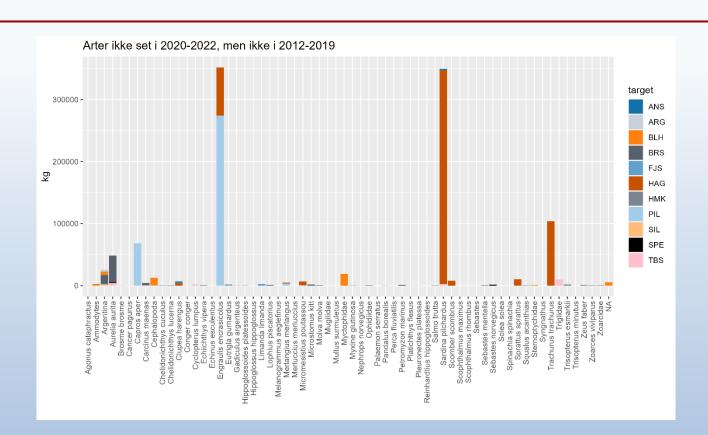
Grundkursus "artsbestemmelse af marine fisk i det pelagiske fiskeri"

#### Følgende emner indgår i kurset:

- Bestandsudvikling af de vigtigste industri fiskerier
- Tobis, brisling, sperling, blåhvilling, havgalt
- Teoretisk gennemgang af de vigtigste bifangst arter
  Teoretisk gennemgang af hvordan man benytter en nøgle
- Praktisk gennemgang af bestandsbestemmelse i laboratoriet
- Test af kursisternes viden


Marie Storr-Paulsen Kursusleder Kai Wieland Underviser




DTU Aqua Institut for Akvatiske Ressourcer

### In the regulation

| Speices         | Area      | Sample numbers <25 tons | Sample numbers between 25 and 200 tons | Sample numbers > 200 tons |
|-----------------|-----------|-------------------------|----------------------------------------|---------------------------|
| Sand ell (SAN)  | Nor Sea   | 3                       | 3                                      | 6                         |
|                 |           |                         | + 1 pr. 50 tons                        | + 1 pr. 250 tons          |
| Sprat (SPR)     | 3A        | 5                       | 10                                     | 21                        |
| Sprat (SPR)     | North Sea | 5                       | 10                                     | 24                        |
| Sprat (SPR)     | Baltic    | 5                       | 10                                     | 15                        |
| N. Pout (NOP)   | Alle      | 5                       | 10                                     | 24                        |
| Blue W. (BLH)   | All       | 3                       | 4                                      | 4 + 1 pr. 250 tons        |
| Boar Fish (BOR) | All       | 3                       | 3                                      | 6                         |
|                 |           |                         | + 1 pr. 50 tons                        | + 1 pr. 250 tons          |



### "New" species in the landings

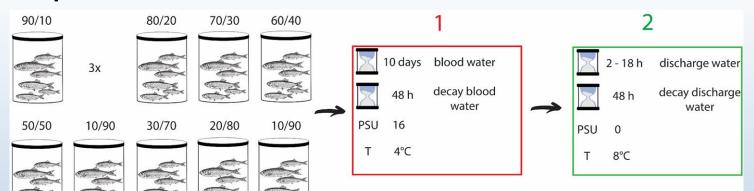


#### Alternative methods?

#### Can DNA testing be used for mixed catches?

#### Challenges:

- How to sample large inhomogenous mixtures?
- Do some species give more DNA ≠ weight?
- Is the precision high enough?


#### Potential solutions:

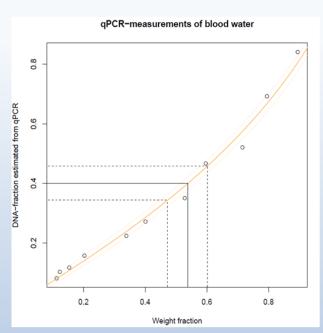
- Sample production water on vessel or in factory = more homogenous DNA composition than the fish
- Calibrate for DNA/weight, with respect to different species
- Test the robustness of inferences with "mock" mixture samples (species proportions and size etc.)

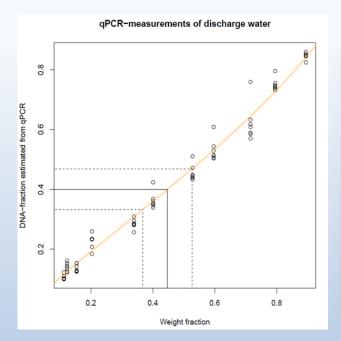


Sprat and herring mixed catches

#### **Experiment:**




40/60 sprat herring


VOLUME

5 kilos in each bucket



## Relationship between weight and DNA fractions (herring)







DNA-fraction measured ( $\mu$ i) = 0.4 (95% CI)

Weight fraction estimated =  $0.53 \pm 0.07$ 



"Sprat, for example, is a species protected by a quota, but in samples from one EU state, sprat was underreported by 78%, while hauls of non-quota species were overreported by 819%, according to the audit, which is mentioned in the EU papers. The average underreporting of herring and sprat in another state were 36% and 63% respectively."

#### **Thanks**













